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A large database from direct numerical simulations of isotropic turbulence, including
recent simulations for box sizes up to 40963 and the Taylor–Reynolds number
Rλ ≈ 1000, is used to investigate the bottleneck effect in the three-dimensional energy
spectrum and second-order structure functions, and to determine the Kolmogorov
constant, CK . The difficulties in estimating CK at any finite Reynolds number,
introduced by intermittency and the bottleneck, are assessed. The data conclusively
show that the bottleneck effect decreases with the Reynolds number. On this basis, an
alternative to the usual procedure for determining CK is suggested; this proposal does
not depend on the particular choices of fitting ranges or power-law behaviour in the
inertial range. Within the resolution of the numerical data, CK thus determined is a
Reynolds-number-independent constant of ≈1.58 in the three-dimensional spectrum.
A simple model including non-local transfer is proposed to reproduce the observed
scaling features of the bottleneck.

1. Introduction
The classical phenomenology of Kolmogorov (1941) bestows a certain universality

on small scales of turbulent motion at large Reynolds numbers. Specifically, the
three-dimensional energy spectrum E(k), for wavenumbers kL � 1, where L is the
scale at which turbulent energy is injected, is given by

E(k)

u2
ηη

= F (kη). (1.1)

Here, η = (ν3/〈ε〉)1/4 and uη = (ν〈ε〉)1/4 are the Kolmogorov length and velocity scales,
respectively, ν is the viscosity and 〈ε〉 is the mean energy dissipation rate. In particular,
the function F (kη) is independent of how turbulence is created. It is also well known
that the Kolmogorov–Obukhov arguments (Kolmogorov 1941; Obukhov 1941) yield
E(k) ∼ k−5/3 in the inertial range given by 1/L � k � 1/η. It is thus useful to rewrite
(1.1) as

E(k) = CK〈ε〉2/3
k−5/3f (kη), (1.2)

where f (kη) is a universal function with the property f (0) = 1 and CK is the
Kolmogorov constant.
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Figure 1. Compensated spectra for Rλ ≈ 38, 90, 140, 240, 400, 650 and 1000 in different
tones (as indicated in the figure) with resolutions kmaxη ≈ 1.5 (solid lines), 3 (dashed lines), 6
(dashed–dotted lines) and 12 (dotted lines). Thin and thick lines correspond to EP and FEK
forcing schemes, respectively (see text). Inset: the compensated spectra in log-linear scales. The
dashed line with slope 11/3 represents complete ‘thermalization’ (see § 2).

Substantial efforts have been devoted to determining CK in experiments (e.g.
Sreenivasan 1995) and simulations (e.g. Yeung & Zhou 1997). A typical procedure
for estimating CK is to plot the ‘compensated’ spectrum

Ψ (kη) ≡ E(k)

〈ε〉2/3
k−5/3

, (1.3)

for kL � 1 and seek a plateau, whose height is taken as CK . However, it is hard
to obtain accurate values of CK in experiments and simulations. We discuss two
operational sources of uncertainty by referring to figure 1 (and relegating a discussion
of its other details to the following sections).

First, at any finite Reynolds number, a perfectly horizontal region does not exist
in any significant part of the compensated spectrum, so the determination of CK

is ambiguous to some extent. This difficulty, especially evident in the compensated
spectrum plotted on the linear scale (see inset), may well be due to inertial range
intermittency, whose effects are noticeable even in second-order statistics (Kaneda
et al. 2003). Due to the intermittent character of the energy dissipation rate, corrections
to the inertial range slope in (1.2) of the form k−5/3−β (β > 0) have been proposed.
However, assessing the appropriateness of this formulation, using either experimental
or numerical data, requires a simultaneous determination of two parameters CK and
β . Furthermore, β is expected to be of the order of 1.5 % of the slope in (1.2) (see
Sreenivasan & Kailasnath 1993) and may escape definitive detection in experimental
(e.g. Praskovsky & Oncley 1997) or numerical simulations (see below), often leading
to inconsistent results. Perhaps for reasons suggested in Bailey et al. (2009), the high-
wavenumber end of the k−5/3 scaling occurs for kη between 10−2 and 10−1. The second
difficulty is the behaviour of the spectrum around kη =O(1) (the ‘near-dissipation’
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range) where viscous effects are important: the function f (kη) does not decrease
monotonically with increasing wavenumbers but shows a spectral ‘bump’, known as
the bottleneck. At low enough Reynolds numbers (say Rλ ≈ 40, which is typical of the
early measurements in grid turbulence), the temptation has been to read the value CK

from the peak in the bottleneck region, with the expectation that it is the harbinger of
the high-Reynolds-number plateau in (1.3). Figure 1 shows that the peak has nothing
to do with the inertial range.

At least in the traditional picture, the inertial range and the near-dissipation ranges
separate from each other at very high Reynolds numbers, though it is conceivable that
this separation of scales might not be a precise description at any Reynolds number.
If, however, the traditional picture is correct, the two difficulties just mentioned are
distinct and it is to be expected that the Kolmogorov constant (if it exists) can be
determined without the influence of the bottleneck. At moderate Reynolds numbers,
however, a proper determination of CK is tied to the understanding of the bottleneck
effect, which is the subject of this study. The bottleneck, which was captured in
an analytical derivation in Qian (1984), has been interpreted by Falkovich (1994)
as a consequence of viscous suppression of high-wavenumber modes, diminishing
energy transfer and piling up energy at the boundary between inertial and dissipative
regions, and leading to the spectral form (kη)4/3 ln−1(kη) (see also e.g. Lohse &
Müller-Groeling 1995; Martinez et al. 1997). Yakhot & Zakharov (1993), on the
other hand, used Clebsch variables to derive a k−1 continuation at high wavenumbers
of the k−5/3 region. The physical mechanism suggested in Yakhot & Zakharov
(1993) is based on ‘waves’ emitted at the smallest scales due to viscous effects
generating an inverse cascade. Kurien, Taylor & Matsumoto (2004) proposed a k−4/3

scaling in the bottleneck region associated with the dynamics of helicity. A different
approach was used in Verma & Donzis (2007) where the bump was attributed
to an insufficiently wide range of scales. Bershadskii (2008) related a k−1 scaling
to non-local interactions with large scales and, based on a perturbation approach,
suggested an exponential roll-off of the spectral density at higher wavenumbers.
Frisch et al. (2008) used hyperviscous equations and closures to argue that the
case of ordinary dissipation (i.e. the Laplacian of velocity components) leads to
‘incomplete thermalization’, whose asymptotic scaling, given by k2, for the three-
dimensional spectrum shows the bottleneck. Other ad hoc functional forms have also
been proposed in the literature (e.g. Cerutti & Meneveau 2000; Kang, Chester &
Meneveau 2003; Meyers & Meneveau 2008).

As already mentioned, the difficulties cited earlier in estimating CK may be thought
to vanish at very high Reynolds numbers. Indeed, geophysical flows which reach
very high Reynolds numbers (e.g. Kaimal et al. 1972; Dhruva, Tsuji & Sreenivasan
1997; Praskovsky & Oncley 1997; Sreenivasan & Dhruva 1998; Tsuji 2004) seem to
support this view, but they are often subject to effects of non-stationarity of the large
scales. Controlled laboratory flows are limited to moderate Reynolds numbers, and
usually subject to the use of Taylor’s frozen-flow hypothesis, surrogates for quantities
that are difficult to measure (e.g. full energy dissipation) as well as limited spatial
resolution. Most of these problems can be obviated in direct numerical simulations
(DNS). Though the DNS has been historically limited to low Reynolds numbers with
narrow inertial range, the relentless growth in computational power over the last 50
years makes it possible to attain Reynolds numbers high enough to observe a clean
inertial scaling and, at the same time, resolve small scales with sufficient accuracy for
statistics of moderate order (Watanabe & Gotoh 2007; Donzis, Yeung & Sreenivasan
2008b). It has been argued recently (e.g. Yakhot & Sreenivasan 2005; Donzis et al.
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2008b) that the resolution commonly employed in the DNS is inadequate, but this
can be checked by repeating the calculations with improved resolution.

The aim of this paper is to use the DNS data to address the scaling of the
bottleneck effect and determine the Kolmogorov constant as accurately as possible.
Our focus will be the three-dimensional spectrum, obtained with the energy dissipation
and related quantities calculated properly, because it presents a stronger bottleneck
than the one-dimensional spectrum (Dobler et al. 2003). Furthermore, our large
DNS database (summarized in Donzis, Yeung & Pekurovsky 2008a; Donzis & Yeung
2009), comprising a wide range of Reynolds numbers, different resolutions and forcing
schemes, allows us to address the sensitivity of the results to varied conditions.

The DNS data are obtained using a massively parallel pseudo-spectral code which
achieves excellent performance on O(104) processors up to 40963 grid points with the
Taylor–Reynolds number up to Rλ ≈ 1000. Here, we show results using the stochastic
forcing of Eswaran & Pope (1988) – denoted below as EP – as well as a deterministic
scheme described in Donzis & Yeung (2009) – denoted below as FEK – which, in
essence, keeps the energy in the lowest wavenumbers fixed. For these two forcing
schemes, the wavenumbers affected by forcing are confined to within a sphere k < kF ,
where kF is of order 2 or 3. To address the effect of small-scale resolution, we
will present results at kmaxη ≈ 1.5, 3, 6 and 11, where kmax =

√
2/3N is the highest

resolvable wavenumber in a domain of size (2π)3 with N3 grid points.

2. The bottleneck effect
The three-dimensional spectra in figure 1 were computed for different Reynolds

numbers, resolutions and forcing schemes. Due to the variabilities within the forcing
schemes (especially EP), the data have been time averaged over several eddy-turnover
times. Except at small wavenumbers, the spectra collapse well. The spectral bump for
all Reynolds numbers is centred around kη ≈ 0.13, consistent with previous findings
(e.g. She & Jackson 1993). The higher the Reynolds number, the more extensive is
the nearly flat region (the ‘inertial range’) in the compensated spectrum; the inertial
scaling is essentially absent for Rλ < 140. The effect of the forcing and resolution
appears to be negligible in both the inertial and dissipative ranges; most of the
differences at small wavenumbers occur around the forcing wavenumbers where
statistical convergence is problematic. However, since the focus of this paper is on
small scales, we will not analyse the large scales in any detail here.

To quantify the properties of the bottleneck, we compute the location, kp , and
the height, Ψp , of the bump for each curve in figure 1: Ψ (kpη) ≡ Ψp . Except for
the lowest Reynolds numbers, the location of the bump in Kolmogorov variables,
i.e. kpη, appears to be independent of Rλ, the forcing scheme and the resolution in the
simulations (figure 2). For Rλ ≈ 38 and 90, a prominent bottleneck appears without
any sign of an inertial range, which suggests that the bottleneck is not simply a
consequence of the inertial range dynamics. We shall return to this consideration
in § 6.

Although the location of the bump is independent of Rλ, its height decreases
systematically with Rλ, as shown in the inset of figures 1 and 3, following a power
law of the form Ψp ∼ Rλ

−γ with γ = 0.04; the data are, however, not inconsistent with
a logarithmic dependence (Verma & Donzis 2007). Since the spectral bump occurs
before the inertial range emerges, non-local effects may play a significant role in
bottleneck effects.
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Figure 2. Wavenumbers kp and kd where Ψ attains its local maximum and minimum,
respectively, towards the end of the inertial range. Circles, squares, diamonds and triangles are
for kmaxη ≈ 1.5, 3, 6 and 11, respectively. Open and filled symbols correspond to EP and FEK
forcing schemes, respectively. Dashed lines at kpη = 0.13 and kdη =0.029 are average values
for Rλ � 240.
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We have also examined one-dimensional spectra (not shown) and found that the
(smaller) bottleneck effect also decreases roughly as Rλ

−0.04 for both longitudinal and
transverse spectra.

The most important point of the discussion so far is that the fundamental
assumption embodied in (1.1) (or (1.2)) should be modified to

E(k)

u2
ηη

= F (kη, Rλ), k � 1/L. (2.1)

It is clear that the form of (1.1) or (1.2) (e.g. Qian 1984; Yakhot & Zakharov 1993;
Falkovich 1994; Bershadskii 2008) cannot fully explain the observed behaviour, at
least for finite Rλ, unless the ‘constants’ in the different models are allowed to depend
on Rλ (Barenblatt & Goldenfeld 1995).

An alternative form of (2.1) would be E(k)/(u2
ηη) = F (kη, L/η), which has been

used to account for intermittency corrections in the inertial range where, as
mentioned in § 1, a scaling of the form (kη)−5/3(kL)−µ/9 is thought to exist with
a Reynolds-number-independent intermittency exponent µ (see e.g. Monin & Yaglom
1975). The classical estimate L/η ≈ (A/15)Rλ

3/2 (A ≡ 〈ε〉L/u′3 being a constant
for Rλ � O(100); see e.g. Donzis, Sreenivasan & Yeung 2005) allows us to write
E(k)/(u2

ηη) ∝ (kη)−(5/3+µ/9)Rλ
−µ/6. Using the generally accepted value of µ ≈ 0.25

(Sreenivasan & Kailasnath 1993), the Reynolds number dependence turns out to
be µ/6 ≈ 0.042, which is close to the value of γ for Ψp , as observed in Meyers &
Meneveau (2008). However, this intermittency correction is valid in the inertial range
and extending its applicability to dissipative scales is not strictly justified. Furthermore,
such a correction would complicate the interpretation of the Kolmogorov constant,
as we will discuss in the next section.

A recent explanation for the bottleneck, due to Frisch et al. (2008), is that the
spectral bump is related to the thermalization process that occurs in truncated
hyperviscous Navier–Stokes equations. Their results, based specifically on the
EDQNM, the standard notation for eddy damped quasi-normal Markovian,
assumptions, show a spectral bump in the neighbourhood of the truncation
wavenumber and a spectral ‘dip’ preceding the bump. Both the bump and dip
were shown to increase with increasing power of the Laplacian in the viscous term.
(The dip was present only when the power of the Laplacian was greater than unity.)
We have computed the local minimum of Ψ (kη) at wavenumbers preceding the
bump location; this dip, evident in experiments (e.g. Tsuji 2004) and simulations (e.g.
figure 5 of Kaneda et al. 2003) alike, will be denoted here by Ψd and its location
by kd . Details of the region around the local minimum (kη ≈ 3 × 10−2) can be seen
in figure 4(a) for spectra at different Reynolds numbers. The values of Ψd obtained
from our simulations are collected in figure 2 only for Rλ � 140 since no minimum
is evident for lower Reynolds numbers; Ψd remains approximately constant. If we
use only the data at Rλ � 240 for the fit, the slope turns out to be practically zero
(solid line), in agreement with the classical K41 inertial range phenomenology. For
reference, figure 1 includes a dashed line with slope 11/3, corresponding to complete
thermalization. The data do not support this trend. It is clear from figure 2 that
the location of the dip, kdη, is independent of the Reynolds numbers and that Ψp

decreases with Rλ.

3. The Kolmogorov constant
The numerical value of CK and its Reynolds number trends are unclear in past

data. Some studies (Praskovsky & Oncley 1994; Mydlarski & Warhaft 1998; Mininni,
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in figure 1.

Alexakis & Pouquet 2008) and theories (Barenblatt & Goldenfeld 1995) suggest that
CK decreases with Rλ. The data from Tsuji (2004), at very high Rλ ≈17 000, yield
a three-dimensional Kolmogorov constant of CK ≈ 1.9, which is higher than those
at lower Rλ (e.g. Praskovsky & Oncley 1994; Mydlarski & Warhaft 1998). The data
collected in Sreenivasan (1995), on the other hand, suggest an essentially constant
value of CK beyond Rλ of about 100, as can also be inferred from simulations
in Kaneda et al. (2003) and Gotoh, Fukayama & Nakano (2002) and from recent
experiments of Welter et al. (2009).

It is most likely the case that these conflicting conclusions are the result of
inconsistent procedures followed in the determination of CK . At low Reynolds
numbers, the Kolmogorov constant is estimated by the peak in the compensated
spectrum with the anticipation that it is the incipience of the expected flat region.
The practice is akin to drawing on the spectrum a tangent with the slope of −5/3,
again with the expectation that, as the Reynolds number increases, the spectrum
will expand along the tangent. The purported magnitudes of CK thus determined
are unreliable and the claims of Reynolds number dependence based on this and
comparable practices lack conviction, especially when data from different sources are
considered.

One may now incorporate intermittency corrections and write (1.2) as
E(k)/(u2

ηη) = C ′
K (kη)−5/3(kL)−β = C ′

KRλ
−3β/2(kη)−5/3−β(A/15)−β , where C ′

K may be
different from CK in (1.2) (see e.g. Monin & Yaglom 1975). If the ‘Kolmogorov
constant’ is computed as the prefactor to the term containing kη to some power,
say C ′′

K =C ′
KRλ

−3β/2(A/15)−β , a decrease in C ′′
K with Rλ does not imply that trend

for C ′
K (or CK ). The determination of CK is thus linked to the determination of

the intermittency exponent in the inertial range. This problem survives even when
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one uses ‘logarithmic derivatives’ (i.e. d[log E(k)]/d[log k]) and the independent term

of log E(k) = log(C ′
K〈ε〉2/3

L−β) − (5/3 + β) log k. The difficulties are clearly seen in
figure 4 where we show Ψ (kη) and d[log E(k)]/d[log k] for different Reynolds numbers
at the highest resolution available. Determining departures from 5/3 (the dashed line
in part b of the figure) will be clearly biased by the choice of the fitting range
at both ends of the nominal inertial range. As already remarked, this has caused
the overestimation of CK at lower Reynolds numbers (Yeung & Zhou 1997). To
highlight the difficulties in trying to compute departures accurately, we also include
−(5/3+µ/9) in figure 4(b), which is nearly indistinguishable from −5/3. Thus, taking
account of classical intermittency corrections in the inertial range does not alter the
picture too much for the present data.

A possible interpretation of the results follows. Ignoring intermittency, the
Kolmogorov spectrum is written as E(k)/(u2

ηη) = CK (kη)−5/3. Thus, the Kolmogorov
constant can be interpreted as the spectral level at kη =1, which, within the theory,
marks the viscous end of the inertial range. This procedure of computing quantities
in the dissipative range by allowing inertial range scaling down to Kolmogorov scale,
though not completely justified for all quantities of interest, is not new and has
been used extensively in the literature (see e.g. Nelkin 1990; Yakhot & Sreenivasan
2005, among others). However, the bottleneck effect, which is not within the purview
of K41, spoils this simplicity. Therefore, it is reasonable to look for the spectral
level ‘just before’ the bump begins to rise (this being the largest wavenumber which
may be expected to be unaffected by the bottleneck). This is, in fact, how Ψd was
computed above. It provides an unambiguous – and, presumably, the correct – way
of determining the Kolmogorov constant without arbitrary specifications of scaling
ranges or particular choices of intermittency corrections. As seen in figure 3, the
determination of Ψd proposed here leads to a constant independent of the Reynolds
number. The average in the range Rλ � 240 is CK = 1.58. This is also consistent with
a reading of the figures in Aoyama et al. (2005) (for example).

We further note that if intermittency corrections were used to compensate the
spectra in such a way that the Rλ-dependency of the bottleneck vanishes, then the
Reynolds number dependency would reappear in inertial range quantities. This is
clear from the different scaling seen for Ψd and Ψp in figure 2. If no departures from
k−5/3 existed, our proposal will also yield the same CK as determined using traditional
methods.

4. Bottleneck in physical space: structure functions
In isotropic turbulence, the three-dimensional energy spectrum is related uniquely

to second-order structure functions (see e.g. Monin & Yaglom 1975). At very small
separations, the viscous (analytical) scaling is given by DL(r)/u2

η = (1/15)(r/η)2 and

DT (r)/u2
η = (2/15)(r/η)2, where well-known isotropic relations have been used. Here,

DL and DT are the longitudinal and transverse structure functions, respectively.
In the inertial (singular) range, a scaling of the form DL ∼ rζ2 is usually sought.
One may expect that the bottleneck effect in spectral space will have a corresponding
manifestation in physical space near the transition between viscous and inertial regions
for DL(r) and DT (r), but there is little discussion of this aspect in the literature. In
fact, Dobler et al. (2003) argued that localized features such as the bottleneck in
wavenumber space will make it sufficiently non-local, and hence, unnoticeable,
in physical space.
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The classical study of the transition region by Batchelor (1951) applies well to
both longitudinal and transverse structure functions (see e.g. Benzi et al. 1993). The
relevant expression is

DB(r)

u2
η

= K
(r/η)2

[1 + (cB r/η)q](2−ζ2)/q
, (4.1)

with K = 1/15 for the longitudinal and 2/15 for the transverse structure functions,
and q = 2. The parameter cB is determined empirically (see Stolovitzky, Sreenivasan
& Juneja 1993). The spectrum obtained by transforming DB(r) to Fourier space does
show a spectral bump (Sirovich, Smith & Yakhot 1994). On the other hand, a model
spectrum without a bump can be transformed to physical space, leading to a more
gradual transition between analytical and singular regions, as was shown by Lohse &
Müller-Groeling (1995), who also concluded that the rapidity of transition between
these ranges is the manifestation of the spectral bump. But Batchelor’s expression
does not depend on the Reynolds number when expressed in terms of Kolmogorov
variables and is thus at variance with the findings in the previous section.

It is therefore useful to investigate how the spectral bump transforms itself in
physical space. In figure 5 we show DL(r) and DT (r) normalized according to K41
(i.e. with ζ2 = 2/3) using DNS data at three Reynolds numbers. An inspection of
the insets (which show a detailed view of this transition between the asymptotes r4/3

and r0) shows a systematic though weak Reynolds number dependence – this being
stronger for transverse structure functions. We thus indeed have

DL/T (r)

u2
η

= G(r/η, Rλ), (4.2)

instead of a Reynolds-number-independent universal function. In the singular range,
we see a weak departure from the plateau shown by the dashed line of figure 5,
indicating anomalous scaling with ζ2 > 2/3 (see e.g. Chen et al. 2005, and more
below). The data at Rλ ≈ 400 for two different forcing schemes show that details of
large-scale forcing do not produce observable changes in the transition region.

To assess more directly the Reynolds number effects on the transition, we show in
figure 6 the transverse structure functions at different Reynolds numbers normalized
by DT (r/η, 1000) as reference. For small and large r , we expect structure functions
to approach analytical and singular scaling, respectively. The figure shows that at
intermediate scales, the ratio is largest at low Rλ with a maximum around r/η ≈ 20.
Longitudinal structure functions (not shown here) exhibit the same but weaker trend.
The numerical value of the structure functions so normalized at the scale of largest
difference is shown in figure 7 as a function of Rλ. The results in figures 5–7 show
that the transition is more rapid at low Reynolds numbers. The smoother transition
in physical space and a reduction of the bottleneck in spectral space at high Reynolds
numbers are complementary and consistent with Lohse & Müller-Groeling (1995).

We have also computed the three-dimensional structure function D(r) which, in an
isotropic situation, like the present, can be written as D(r) = 3DL(r) + r dDL(r)/dr .
Since the computation of D(r) requires differentiation with respect to the separation
r and only discrete values are available from simulations, we have interpolated our
results to a finer grid using splines and applied a high-order finite difference operator.
We have confirmed that a smoother transition occurs at high Rλ similar to those seen
in previous figures for longitudinal and transverse structure functions. The Reynolds
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number dependence of D(r) evaluated at r/η ≈ 20 is Rλ
−0.024, which lies between the

values for DL(r) and DT (r) (see figure 7).
Equation (4.1) has been used widely in the literature (e.g. Stolovitzky et al. 1993;

Lohse 1994; Sirovich et al. 1994; Meneveau 1996; Chevillard et al. 2006). However, it is
necessary to incorporate the Reynolds number dependence for it to conform to (4.2). If
the analytical and singular ranges are assumed to be universal and the functional form
(4.1) is to be retained, the rapidity of the transition is controlled only by the parameter
q . We have used (4.1) to fit the structure functions in figure 5, and summarize the
results in figure 8 with ζ2 = 0.67. To avoid the contamination by large scales, the fitting
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range was limited to r/η � 70. (The best-fit coefficients are robust against reasonable
variations in this limit. For example, increasing the range to r/η < 100 changes the
value of cB by less than 1 %.) Figure 8(a) shows that cB is independent of Rλ with
average values of 0.076 and 0.102 for longitudinal and transverse structure functions,
respectively. By means of isotropic relations (Monin & Yaglom 1975), one can use
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−βT + γT with (αL, βL, γL) = (32.6, 1.06, 1.65) and

(αT , βT , γT ) = (19.4, 0.92, 1.78).

cB for the longitudinal case to obtain CK = (1/4.02)(55/18)(1/15)cζ2−2
B = 1.56 which

is, therefore, independent of Rλ as well. This value is also in agreement with that
obtained from the spectrum (see figure 3), but the procedure itself depends on the
value of the scaling exponent ζ2, whose determination is ambiguous when a clear
scaling range is not present.

In figure 8(b) we show q as a function or Rλ. Its unambiguous decrease with the
Reynolds number, at least for low and moderate values, confirms the conclusion
that the transition at high Reynolds numbers is smoother, which is the manifestation
of a milder spectral bump. The data can be fitted by an expression of the form
qL = αLRλ

−βL + γL, with the suffix L indicating the longitudinal case. A similar fit
exists for transverse structure functions. The high-Reynolds-number asymptotes are
given by γL =1.65 and γT = 1.78. It is interesting that while the shape of DL/T (r) at
the transition changes with Rλ, cB and, therefore, CK , remain constant, resembling
the behaviour of Ψp and Ψd .

Since the conclusions drawn for longitudinal and transverse structure functions
also apply to the three-dimensional D(r), the corresponding figures are not shown
here. Equation (4.1) can represent the data quite well with q varying with the same
functional form as that for the longitudinal and transverse structure functions but
with different numerical coefficients. In this case, we find q =241Rλ

−1.39 + 1.74.

5. Correspondence between wavenumber space and physical space
We have shown in figure 1 that the spectral bump is centred around kη ≈ 0.13.

From the qualitative correspondence k ∼ 1/r , we might expect the transition region
from analytical to singular parts of the structure functions to lie roughly around
r/η ∼ O(10). Indeed, the intersection of the asymptotes from the two regions, shown
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Figure 9. (a) The structure function model given by DB (r) exp(−r/L) with ζ2 = 0.68 and
q = 2. (b) Compensated energy spectrum corresponding to structure functions in (a). Different
lines correspond to L/η = 102, 103, . . . , 107, increasing values of L/η (or Rλ) indicated by the
direction of the arrow. The inset plots the spectra in log-linear coordinates.

in figure 5, roughly bear out this expectation. However, as mentioned in Dobler et al.
(2003), local features in one space are non-local in the other. This is easily seen
from the integral relations between D(r) and E(k) which, for isotropic turbulence,
are given by E(k) ∝

∫ ∞
0

kr sin(kr)D(r) dr and D(r) ∝
∫ ∞

0
(1 − sin(kr)/kr)E(k) dk (see

e.g. Monin & Yaglom 1975). The lack of knowledge on the shape of E(k) and D(r)
and the oscillatory nature of the integrands make it difficult to be precise about the
correspondence between the bottleneck effects in k and r spaces.

Nevertheless, we can use (4.1) to obtain analytical expressions to assess this
correspondence. Since (4.1) grows without bound as r → ∞, one has to make some
assumption on this asymptotic behaviour. Different such assumptions have been
made in the literature (Sirovich et al. 1994; Lohse & Müller-Groeling 1996; Aivalis
et al. 2002), but we assume a simple form that lends itself to analytical treatment.
In particular, the downturn for large values of r observed in figure 5 is modelled
by multiplying (4.1) by exp(−r/L). Figure 9(a) shows the incorporation of this
functional form for various L/η (or Rλ). Although this form is not strictly correct
since DL/T (r) should approach a constant for large r , it will serve to draw some
useful conclusions. The corresponding normalized energy spectrum, ΨB(k), obtained
by solving the integral relation between D(r) and E(k), is quite intricate and involves
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hypergeometric and Bessel functions. In figure 9(b) we show the result for the cases
considered in figure 9(a).

By construction, the widening of the inertial range is the only real-space change
occurring as L/η increases. In spectral space, one observes not only a corresponding
widening of the inertial range but also, and more interestingly, a strong dependence of
the far dissipation range on L/η. Even though this effect weakens when the separation
of scales is large enough – as is clear from the inset of figure 9(b) where we plot
the spectra in log-linear scales – it is apparent that changes in the form of structure
functions at large separations influence the spectrum at dissipative scales, making
it difficult to identify the bottleneck effects localized around a wavenumber k with
similar effects around 1/k in real space. Though this result was obtained from a
model structure function, similar considerations could be applied to experimental and
numerical data.

As a final point, we note that the behaviour present in the inset of figure 9(b)
appears to show an opposite trend to that from DNS data as Rλ increases (see
e.g. figure 1). Although genuine concerns can be raised about the accuracy of the
data at very high wavenumbers (close to kmaxη), the present results suggest that the
large scales in physical space can show a ‘qualitative’ change of behaviour at high
wavenumbers. We stress, nevertheless, that highly resolved simulations over a wider
range of Reynolds numbers will be needed to make more definite statements.

In summary, any assessment of the features in one space cannot be translated to
the other in a straightforward manner; both representations have to be examined. In
particular, the definitions of large and small scales in one space do not correspond to
the same definition in the other space simply through the use of k ∼ 1/r . Although
this result does not immediately imply that large scales in real space influence the
spectral bump, we explore this possibility in the next section.

6. Discussion
Extrapolation of the best fits in figure 3 for Ψp and Ψd suggests that the bottleneck

would essentially disappear at Rλ ∼ O(2 × 105). Alternatively, the inset of figure 3
shows the difference Ψp − Ψd as a function of Rλ. A power law with the exponent
of −0.2 (solid line) is also consistent with the data, showing that the bottleneck
disappears gradually and would be negligible at Rλ ∼ 2 × 105. This Reynolds number
is beyond today’s computational capabilities. Atmospheric flows do achieve such
Reynolds numbers, though results from these flows are limited to one-dimensional
spectra (which are known to possess smaller spectral bumps). If the bottleneck
disappears only at very large Reynolds numbers, all finite-Reynolds-number theories
must necessarily incorporate it. We have already suggested above that non-local
transfer may play a role in such a theory. We now make this statement more
quantitative.

The local energy transfer from a wavenumber k in the inertial range to higher
wavenumbers can be estimated by the energy E(k)k divided by the cascade time
scale 〈ε〉−1/3

k−2/3. The diffusive loss of energy is of the order E(k)k/(k−2ν−1), where
we have used k−2ν−1 for the diffusive time scale. On dimensional grounds, the effect
of non-local transfer from large scales, say L with characteristic velocity u′ (e.g. the
r.m.s. velocity), to wavenumber k can be estimated as u′[E(k)k]/L. It is relevant to
note that simulations of Mininni et al. (2008) suggest that the energy transfer from
large scales does not vanish at high wavenumbers for fixed Rλ, but approaches a
constant. This asymptote, however, does decrease with Rλ. We can now combine the
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three contributions weighted by constants c1, c2 and c3, all of the order unity, and
equate the sum to 〈ε〉, which is the transfer of energy directed by the large scales. The
result can be put in non-dimensional form as

Ψ (kη) = [1/c1 + (kη)4/3/c2 − c3(kη)−2/3Rλ
−1]−1. (6.1)

If the viscous contribution (second term in brackets) and the non-local contributions
(last term) are neglected, we recover the K41 spectrum with c1 = CK .

We should stress that all three contributions will be important only in the
neighbourhood of Ψp . It is possible to choose the constants c1, c2 and c3 to obtain
a scaling consistent with the DNS data. In particular, the choice of c1 ≈ 1.58, c2 ≈ 2
and c3 ≈ 2 results in a Ψp that is close to the power law Rλ

−γ found in figure 3.
Although a functional form for the entire spectrum is not known, the results in §§ 2

and 3 allow us to constrain the allowable form of (2.1). Figures 2 and 3 show that
while Ψp decreases with Reynolds number, its location kpη as well as the height of the
spectral dip Ψd and its location kdη are independent of the Reynolds number. Thus,
the key spectral features of the dissipative range scale with Kolmogorov scales except
for the amplitude of the bump, which contains a Reynolds number dependence. Since
the inertial range scaling remains essentially independent of Rλ, it follows that a
function of the form

E(k)

u2
ηη

= g1(kη)[1 + g2(kη)h(Rλ)], (6.2)

where g1(kη) characterizes the behaviour in the inertial and far-dissipation
range, appears appropriate. The function g1 is often represented as g1(kη) =
CK (kη)−5/3 exp(−α1(kη)α2 ), where α1 and α2 are constants. The function g2(kη), on
the other hand, characterizes the shape of the bump (g(kη) → 0 as kη → 0); its
Reynolds number dependence is represented by h(Rλ) which, as we have seen, can be
approximated by Rλ

−γ . This suggests that some dependence on Rλ might remain in
the far dissipation range (as is also clear for the model in figure 9b). This dependence,
which may be ascribed to variations in α1 and α2, can also be due to residual effects
of h(Rλ) at higher wavenumbers. A precise answer requires a more systematic study.

7. Conclusions
Using data from DNS from several boxes up to 40963 grid size, covering Taylor

microscale Reynolds numbers from 38 up to ≈1000, we investigated the scaling of the
bottleneck effect and the difficulties it causes in the determination of the Kolmogorov
constant CK . We proposed an unambiguous way of determining the constant and
showed that the result does not depend on data fitting ranges, particular power-law
behaviour or intermittency corrections. The constant so determined is 1.58 for the
three-dimensional spectrum, independent of Rλ.

The spectral bump decreases slowly with Rλ and may become negligible only for
microscale Reynolds numbers greater than O(105). This observation forces us to
include a Reynolds number dependence even for small scales (i.e. (2.1)). Structure
functions also possess Reynolds number effects in the transition between analytical
and singular ranges. The DNS data suggest that the sharpness of this transition
is related to the bottleneck in wavenumber space: a smoother transition means a
diminished spectral bump.

Finally, we proposed a modified version of the widely used Batchelor formula
(4.1) for second-order structure functions to take into account the Reynolds number
dependence. By using (4.1) and a model for large scales, we have shown that large-scale
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features of structure functions may appear at dissipative scales in wavenumber space.
This result complicates the correspondence r ∼ 1/k usually used for phenomenological
estimates. A simple model that takes into account local, non-local and viscous
contributions has been proposed to reproduce the behaviour in the neighbourhood
of the bottleneck. We note, however, that detailed studies of triadic interactions and
their scaling with Reynolds numbers should be conducted to fully unveil the effect of
non-local transfer.

Two directions naturally follow from this paper. First, simulations or experiments
at higher Rλ that can reliably measure the three-dimensional spectrum are needed
to address the asymptotic behaviour of both Ψd and Ψp . Second, it is necessary to
investigate the far-dissipation region more systematically to determine the Reynolds
number effects. Both issues are important in understanding the limitations of
universality at finite Reynolds numbers. This is part of the ongoing research.

A final comment appears useful. Since the large-scale effects depend on the flow,
some characteristics of the bottleneck can be expected to depend on the flow as
well. Fortunately, at the present level of detail, the effect appears entirely through the
large-scale L. Thus, we may expect some universality of the conclusions reached here.

The DNS database used in this work, including the data from the largest 40963

simulations, has been generated in collaboration with P. K. Yeung at the Georgia
Institute of Technology. The authors would like to thank U. Frisch for useful
comments on the ideas presented here. They also acknowledge the computational time
at the Texas Advanced Computing Center, Austin, TX, and the National Institute for
Computational Sciences, Oak Ridge, TN. This work was supported by the National
Science Foundation Grants CBET-553867 and CTS-0553602.
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